INTRODUCTION

Subarachnoid block is a commonly employed anaesthetic technique for performing lower abdominal and lower limb surgeries. It is a safe, inexpensive and easy to administer technique which also offers a high level of post anaesthesia satisfaction for patients. Spinal anaesthesia has a fast onset and provides effective sensory and motor blockade. Administration of the appropriate choice and dose of local anaesthetic into the subarachnoid space results in rapid onset of dense surgical anaesthesia with a high degree of success. The risks of general anaesthesia including mishaps due to airway management are avoided like failed intubation, aspiration, venous thrombosis and pulmonary embolism.

Bupivacaine, levobupivacaine and ropivacaine have all been used as intrathecal drugs. Bupivacaine is the most commonly used long acting local anaesthetic agent for spinal anaesthesia. Apart from its common undesirable side effects as hypotension, bradycardia, urinary retention, its more serious cardiotoxicity and central nervous system toxicity led to identification of Ropivacaine. Both are amino-amide local anaesthetics. Structurally they belong to the family of n-alkyl substituted pipercoloxylidide. But Ropivacaine has propyl group and Bupivacaine has a butyl group on the amine portion of pipercoloxylidide. Ropivacaine shares many physiochemical properties with Bupivacaine. Onset time and duration of action are similar but Ropivacaine produces less motor block when injected at the same volume and concentration. This is due to lower potency of Ropivacaine compared with Bupivacaine. Ropivacaine is less lipophilic than bupivacaine and less likely to penetrate large myelinated motor fibers, resulting in a relatively reduced motor blockade. Thus ropivacaine has a greater degree of motor sensory differentiation with hemodynamic stability.

MATERIAL AND METHODS

With the approval of institutional ethical committee this comparative randomized clinical controlled trial study was undertaken to compare the duration of motor block between ropivacaine and bupivacaine. It
was conducted in the main operation theatre of Khyber Teaching Hospital, Peshawar from April 2013 to October 2013. After taking written informed consent of the patients, a total of 88 patients scheduled for lower limb surgeries belonging to American Society of Anaesthesiologists (ASA) class I and II between age group 18-40 years with no gender discrimination were included. Those patients falling into ASA class III and IV or with history of hypertension, cardiovascular disease, cerebrovascular disease, diabetes, musculoskeletal disease were excluded. Patient’s demographics (including age, gender) and outcome in terms of duration of motor blockade were recorded on a standardized proforma. Duration of motor blockade was determined in minutes using a standard stop watch using modified bromage scale. Duration of motor blockade was taken as the time interval between grade 3 until patient resumed grade 0 on bromage scale. Assessments of motor block scores were made at 5 minute intervals during the first 30 minutes, then 15 minute intervals until complete recovery.

Bromage Scale

Grade 0 – No block
Grade 1 – Unable to flex the hip
Grade 2 – Unable to flex the hip and unable to extend the leg with hip passively flexed
Grade 3 – Unable to flex the ankle

RESULTS

The data was analyzed using SPSS version 16 with proportions and mean ± SD calculated for categorical and continuous variables, respectively. Probability ≤ 0.05 was taken as significant. Comparison is given for variables like sex and age in Table 1 and Table 2 respectively.

Duration of motor blockade ranged from 105 minutes to 140 minutes in group A whereas it ranged from 155 minutes to 210 minutes in group B. At 100th minute none of the patients recovered from motor block in both groups. Mean duration of motor blockade in group A was found to be 123.98 ± 9.24 minutes and group B it was 183.41 ± 11.14 minute. The mean duration of motor block was significantly shorter in group A as compared to group B suggesting that group A provides rapid recovery (p-value < 0.001) (Table 3).

DISCUSSION

Ropivacaine is a new local anaesthetic with duration of 2-3 hours and can be used for intrathecal administration\(^1\). Ropivacaine as compared to Bupivacaine has reduced risk of central nervous system and cardiac toxicity\(^16,17\). Moreover due to shorter duration of motor blockade there is early ambulation and discharge with good quality of postoperative analgesia. Therefore it is gaining increasing popularity and studies are going on to improve regional anaesthesia with less cardiotoxic and neurotoxic effects\(^18,19\).

Duration of motor blockade was measured by using bromage scale and it was ranging from 105 minutes to 140 minutes in group A whereas it ranged from 155 minutes to 210 minutes in group B. In a study conducted by Bhat SN et al comparing efficacy and safety of Ropivacaine with bupivacaine for intrathecal anaesthesia for lower abdominal and lower limb surgeries. The mean duration of blockade in ropivacaine group was 153.57 ± 15.65 minutes and in bupivacaine group was 211 ± 11.29 minutes\(^20\). Girich KJ compared 0.5% isobaric ropivacaine and 0.5% isobaric bupivacaine in spinal anaesthesia for endoscopic urological surgeries. Mean duration of motor blockade in ropivacaine group was 106.71 ± 10.85 minutes and in bupivacaine group was 168.82 ± 17.90 minutes\(^21\). These results were consistent with our findings. Chari VRR\(^22\), McNamee et al\(^23\) and Marret et al\(^24\) also showed similar results of less duration of motor blockade with ropivacaine as compared to bupivacaine.

Table 1: Sex distribution

<table>
<thead>
<tr>
<th>Sex</th>
<th>Group A N (%)</th>
<th>Group B N (%)</th>
<th>Total N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>21(47.7)</td>
<td>27(61.4)</td>
<td>48(54.5)</td>
</tr>
<tr>
<td>Female</td>
<td>23(52.3)</td>
<td>17(38.6)</td>
<td>40(45.5)</td>
</tr>
<tr>
<td>Total</td>
<td>44(100)</td>
<td>44(100)</td>
<td>88(100)</td>
</tr>
</tbody>
</table>

P=0.199

Table 2: Age distribution in years

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>30.4091</td>
<td>7.35580</td>
<td>44</td>
</tr>
<tr>
<td>B</td>
<td>32.8182</td>
<td>5.37554</td>
<td>44</td>
</tr>
<tr>
<td>Total</td>
<td>31.6136</td>
<td>6.51864</td>
<td>88</td>
</tr>
</tbody>
</table>

P=0.083

Table 3: Duration of Motor blockade between ropivacaine and bupivacaine

<table>
<thead>
<tr>
<th>Group</th>
<th>Range (min)</th>
<th>Mean (min)</th>
<th>SD ±</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (ropivacaine)</td>
<td>105 to 140 minutes</td>
<td>123.98</td>
<td>9.24974</td>
</tr>
<tr>
<td>B (bupivacaine)</td>
<td>155 to 210 minutes</td>
<td>183.41</td>
<td>11.14246</td>
</tr>
</tbody>
</table>

P value <0.001
Kleef JWW et al compared efficacy and safety of 0.5% and 0.75% ropivacaine for lower limb surgeries, found inadequate motor blockade with 0.5% ropivacaine indicating quick recovery with 0.5% ropivacaine compared to 0.75% ropivacaine. However, Varun S et al conducted a study comparing intrathecal isobaric bupivacaine – fentanyl and isobaric ropivacaine – fentanyl for lower abdominal and lower limb surgeries. Duration of motor blockade was comparable (P value 0.294) in their study which may be attributed to the addition of fentanyl to the local anaesthetics.

CONCLUSION

0.5%, Ropivacaine 15 mg can be used successfully for lower limb surgeries where early motor recovery is required and well appreciated by the patients too.

REFERENCES

AUTHOR'S CONTRIBUTION

Following authors have made substantial contributions to the manuscript as under:

Naz U: Idea and operating surgeon.

Aziz N: Data collection and typing.

Haider T: Bibliography.

Aurangzeb: Statistics.

Khan P: Follow up.

Authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

CONFLICT OF INTEREST: Authors declare no conflict of interest

GRANT SUPPORT AND FINANCIAL DISCLOSURE NIL

ONLINE SUBMISSION OF MANUSCRIPT

It is mandatory to submit the manuscripts at the following website of JMS. It is quick, convenient, cheap, requirement of HEC and paperless.

Website: www.jmedsci.com

The intending writers are expected to first register themselves and then attach/submit the manuscript. If processing fee is not submitted before should be deposited with Managing Editor in cash or can submit in the form of bank draft in the name of editor JMS. Also follow the format and check list of the Journal. Author agreement can be easily downloaded from our website. A duly signed author agreement must accompany initial submission of the manuscript.