Delayed primary repair of flexor tendon injury in distal forearm

By

Author No 1:
Gulzar Saeed Ahmed
MBBS, FCPS
Associate Prof. Orthopedic Surgery
Liaquat University of Medical & Health Sciences
Jamshoro Sindh Pakistan.

Author No 2:
Syed Muhammad Ali
MBBS, FCPS
Assistant Prof. Orthopedic surgery
Liaquat University of Medical & Health Sciences
Jamshoro Sindh Pakistan.

Author No 3:
Dr Mohammad Arif
FCPS (Ortho)
Professor HOD
Department of Orthopedic and Spine Surgery
Hayatabad Medical Complex
Peshawar Pakistan

Author No 3:
Dr Muhammad Inam
MRCS, FCPS (Ortho)
Senior Registrar
Department of Orthopedic and Spine Surgery
Hayatabad Medical Complex
Peshawar Pakistan

Correspondence: Dr. Gulzar Saeed Ahmed
A-9 block C, unit-6 Latifabad Hyderabad.
Sindh Pakistan
Phone: +92 333 2601173
E-mail: gulzarsaeed@yahoo.com
Delayed Primary Repair of Flexor Tendon Injury in Distal Forearm
Gulzar Saeed Ahmed, Syed Muhammad Ali, Mohammad Arif, Muhammad Inam
Department of Orthopedic Surgery Liaquat University of Medical & Health Sciences
Jamshoro Sindh and Department of Orthopedic and Spine Surgery Hayatabad Medical
Complex Peshawar Pakistan

ABSTRACT

Introduction: Injuries to the flexor tendons are common. For the management of tendon injury, many repair techniques and modified rehabilitation programs have been reported. The basic aim is to prevent adhesions, gap formation and post operative rupture. The aim of this study was to analyze the results of delayed primary tendon repair using modified Kessler technique in patients with flexor tendon injury in distal forearm (hand zone V).

Material and Methods: The study was conducted at Liaquat University Hospital and a private practice setup from January 2010 to December 2011. A total of 50 adult patients were included in the study. The inclusion criteria were adult patients having injury with sharp objects in zone five, presenting between 24 hours to 10 ten days after injury. The exclusion criteria were associated vascular injury requiring repair, nerve injury, diabetes mellitus, infection, and segmental loss in tendons. The primary outcome measures were, painless movement of tendon, full range of movement of finger or wrist joint associated with the repaired tendon. Secondary outcome measures were infection, limitation or painful movement of tendons, adhesions, dehiscence of repair leading to tendon rupture at the repair site. Surgery was performed under general anesthesia and tourniquet. The tendons were repaired with 3/0 proline, using modified Kessler technique. Post operatively, controlled active motion program as advised by Kleinert et al was followed.

Results: Out of 50, thirty eight (76%) were male and 12 (24%) were female. The age range was between 20 to 65 years. Mean age ± SD, 34.40±12.49. The injury was caused by knife in
18(36%), glass in 16(32%), hatchet in 13(26%) and machine in 3 (6%) patients. Total number of tendon repaired was 115. (2.3 per patient). Tendon repair was performed within 24 hours of admission in all patients. Modified Kessler technique was performed in all tendons repairs. Thirty eight out of 50(76%) patients recovered fully and regained full range of pain free movement at wrist and fingers in 8 to 12 weeks time. Mean time of recovery ± SD (Range) 8.88±1.319. Six patients (12%) developed early post operative superficial infection. These patients responded well to treatment and recovered normally in 8 to 12 weeks time. Four (8%) patients develop adhesions resulting in limitation of movement at fingers, and two (4%) patients develop rupture of tendon at the suture site, requiring second surgery.

**Conclusion:** Modified Kesslers suture technique of tendon repair is effective for delayed primary repair of flexor tendon injury in distal forearm (zone V).

**Key words:** tendon, repair, Modified Kessler.

**INTRODUCTION**

Injuries to the flexor tendons are common. As the flexor tendon in hand and forearm lie close the skin, the usual causes are, lacerations from sharp objects, crush injuries and sometime
rupture from the site of insertion at bone during contact sports. These injuries could pose a challenge to orthopedic surgeon. The surgical intervention is always required to bring the ends together. The post operative management requires a careful planning as mobilization is essential to prevent adhesions and the risk of rupture is always there\(^1\).

If the tendon is repaired within 12 hours of injury it is called primary tendon repair. In rare circumstances this time can be extended up to 24 hours. The delayed primary repair is the one which is performed within 24 hours to approximately 10 days after the injury. After 10 to 14 days the repair is called secondary repair, and after four weeks, it is called late secondary repair\(^2\).

The flexor surface of hand is divided into five zones. Zone I extends from just distal to the insertion of the sublimis tendon to the site of insertion of the profundus tendon. Zone II is the area between the distal palmar crease and the insertion of sublimis tendon. Zone III is the area between distal margin of transverse carpal ligament and the beginning of the area of pulleys or first annulus. Zone IV is the area covered by the transverse carpal ligament. Zone V is the area proximal to the transverse carpal ligament and includes the forearm\(^3\).

The repair of tendons can be delayed for various reasons, e.g. other injuries requiring immediate surgical intervention, severe wound contamination, crushing injuries, soft tissue loss and multiple fractures. Under these circumstances, the condition of patient does not allow the definitive treatment of the tendons, and it is advised that wound should be kept clean and dressed till it becomes possible to carry out definitive management of tendon injury. A delay of two to three days has very low risk of complications if the wound is kept clean\(^2\).
For the management of tendon injury, many repair techniques have been reported. The basic aim is to prevent adhesions, gap formation and post operative rupture. Modified rehabilitation programs have been developed to improve the results of surgery. There has been a lot of stress for strong suture techniques as early post operative movement protocols have shown good results. Many reports suggest that more suture strands passing through the repair field increase stretching strength.

But this type of complex suture techniques are difficult to perform and excessive manipulation of the tissues is required. Modified Kessler technique is relatively easy to perform.

There are various complications of tendon surgery. The immediate complications could be infection, tendon rupture, poor tendon gliding, and later on adhesion formation. In our setup many patients with tendon injury present late. The aim of this study was to analyze the results of delayed primary tendon repair using modified Kessler technique in patients with flexor tendon injury in distal forearm (hand zone V).

Material and Methods:

The study was conducted at Liaquat University Hospital and a private practice setup from January 2010 to December 2011. A total of 50 adult patients were included in the study. The inclusion criteria were adult patients having injury with sharp objects in zone five. The
exclusion criteria was associated vascular injury requiring repair, nerve injury, diabetes mellitus, infection, segmental loss in tendons, tendon injury more than ten days old. The primary outcome measures were, painless movement of tendon, full range of movement of finger or wrist joint associated with the repaired tendon. Secondary outcome measures were infection, limitation or painful movement of tendons, adhesions, dehiscence of repair leading to tendon rupture at the repair site. Patients presenting between 24 hours to 10 ten days after injury were included in the study.

At the time of admission history was taken and specially, mechanism of injury, time elapsed since injury was noted. Patients were also asked about the previous injury in the same region. General Physical examination and examination of both hands was carried out systematically. The site and size of wound were checked and recorded. Flexor digitorum superficialis and profundus and wrist flexors were checked individually. Flexor digitorum superficialis was noted intact when all the adjacent digits were held with all joints in extension and the patient was able to flex the finger at the proximal interphalangeal joint. The flexor digitorum profundus, was noted intact if the middle phalanx was kept in extension and the patient is able to flex the distal interphalangeal joint. The flexor carpi radialis and flexor carpi ulnaris and flexor polices longus were also checked and noted. Radiographs were taken to exclude fractures. The vascular status of limb, radial, ulnar and median nerves were also checked and noted.

Surgery was performed under general anesthesia and tourniquet. Prophylactic antibiotics (first generation cephalosporins) were given at the induction of anesthesia. The wound debridement was done and wounds were extended to expose the tendons ends. The tendons ends were carefully matched, with attention to their location and level of wound. The tendons were repaired with 3/0 proline, using modified Kessler technique (Figure 1). A suture was passed through the tip of the finger nail for controlled active motion programme as advised by Kleinert et al\textsuperscript{8}. The wound was closed with 3/0 proline.
A dorsal splint was applied to hold the wrist in 30 degrees of flexion and metacarpophalangeal joint at 40 to 60 degrees of flexion. The interphalangeal joints were splinted in extension. The suture placed at the finger tip was attached to a rubber band and the other end of rubber band was attached to safety pin which in turn was attached to the bandage on distal forearm. This arrangement keep the finger in flexion of 40 to 60 degrees at the proximal interphalangeal joint with no tension on the rubber band, and allows active extension at proximal interphalangeal joint. Starting from the first day after surgery, active extension exercises within the limitation of splint were encouraged. After three weeks the dorsal splint was removed, and rubber band with connecting hook to the wrist band was kept on for additional 3 weeks. The patient was encouraged to actively extend the digit against the resistance of the rubber band. Passive extension and active flexion was not permitted. The rubber band and wrist band was removed at 6 to 8 weeks. Strengthening exercises were allowed at 8 to 10 weeks. In patients with isolated flexor carpi radialis and flexor carpi ulnaris injury, the repair in zone V was performed with 3/0 proline with modified Kessler technique and post operatively the wrist was immobilized with dorsal splint in 30 degrees of flexion. The splint was kept on for 6 to 8 weeks.

The skin stitches were removed after two weeks in all patients. In case infection was detected the skin stitches were removed earlier².

The data was entered and analyzed in statistical program SPSS Version 16.0. Qualitative variable such as Gender, mechanism of injury, complication, tendon repair and outcome (Good & Poor) were presented as n (\%). Numerical variable like age (In Years), time of injury and recovery were presented as mean $\pm$ SD. No statistical test was applied due to descriptive data.
RESULTS:

A total of 50 patients were included in the study. Thirty eight (76%) were male and 12 (24%) were female. The age range was between 20 to 65 years. Mean age ± SD, 34.40±12.49.

The injury was caused by knife in 18(36%), glass in 16(32%), hatchet in 13(26%) and machine in 3 (6%) patients. Most of the injuries were in the distal part of forearm proximal to transverse carpal ligament. Fifteen patients reported 2 days, 23 patients 4 days and 8 patients 5 days and 4 patients 7 days after injury. Meantime b/w injury & admission ± SD (Range) 3.80±1.44 (2-7 days). (Table No. 1)

Total number of tendon repaired was 115. (2.3 per patient). Tendon repair was performed within 24 hours of admission in all patients. Modified Kessler technique was performed in all tendons repairs. Thirty eight out of 50(76%) patients recovered fully and regained full range of pain free movement at wrist and fingers in 8 to 12 weeks time.

Mean time of recovery ± SD (Range) 8.88±1.319 (8 – 12 weeks).

Complications were detected in 12(24%) patients. Six patients( 12%) developed early post operative infection, four (8%) patients develop adhesions resulting in limitation of movement at fingers, and two(4%) patients who remove the posterior splint 2 to 3 weeks after surgery develop rupture of tendon at the suture site.

Six patients with early post operative infection were treated with early removal of stitches, debridement and antibiotics according to culture and sensitivity. The infection was superficial and confined to skin. All the six patients responded very well and their later recovery was normal.

Four patients who develop adhesions, were non compliant to the early mobilization instructions. They did not regained full range of movements up to 12 weeks after repair.
These four patients were operated for tenolysis 4 to 5 months after surgery and they recovered and regained full range of movement with 13 weeks of second surgery.

Two patients develop rupture of tendon at the suture line within three weeks after surgery. They were operated again and the results were fair as the healed with some limitation of movement.

The overall results were poor in 6 (12%) and good in 44 (88%) of patients. (Table No: 2).

**DISCUSSION**

The Infection rate in our series was 12% which is very high by any standard. The infection was superficial and did not affect the final outcome in term of function. Reason for this high infection rate could be that all cases included in the study were presented late and delayed primary repair was done in all cases.

It has been shown in many studies that the strength of flexor tendon repair is directly proportional to the number of threads crossing the repair site. Other studies have shown that this multi stands technique need lot of expertise and experience, because tendon handling is increased, as needle is passed many time through cut ends. This may results into complications like uneven loading of tendons. A two strand tendon repair done with 4/0
suture has breaking strength of 20 to 30 N which is equal to approximately 2 to 3 kg of force\textsuperscript{10,11}. Thicker sutures and multiple strands can increase the strength of repair up to 70 N\textsuperscript{12}. It has also been said that increased breaking strength may not improve the quality of repair. As before breaking the repair starts to gap, gaping tendons increase friction\textsuperscript{13,14}. Levent et al have shown that average tensile strength of 2 stand modified Kessler suture was 39.89±9.65 Newton (N), for 4 stand modified Kessler suture was 50.29±11.24 N and for 4 strand Strickland technique the strength was 39.64±9.14 N\textsuperscript{15}. We found that the strength of modified Kessler suture was enough to sustain the postoperative stress at repair site as only two out of fifty patients (4\%) develop rupture at repair site. The patients were non compliant to the rehabilitation program.

There is huge evidence that careful rehabilitation program is mandatory to achieve favorable results. The early motion techniques have improved tendon healing with fewer complications and with better outcome\textsuperscript{16}. We followed the controlled active motion program as advocated by Kleinert et al\textsuperscript{8}. With this technique it is believed that repair site is not stretched and the movement promotes healing. It is observed that mobilized tendon heal quicker and develop greater strength and fewer adhesions as compared to immobilized tendons\textsuperscript{17}.

Reoperation rate in our series was 12\% (6/50). Dy CJ et al in their meta-analysis of 29 studies have reported 6\% reoperation rate, 4\% rupture and 4\% adhesions\textsuperscript{18}. Saini N et al has reported 3\% tendon rupture, and 3\% contracture\textsuperscript{19}. Elliot D et al reported 3-9\% rupture rate\textsuperscript{20}. Adhesion rate in our series was 8\%. This is high as compared to the literature, and the reason is non compliance of patients to the early mobilization instructions. Manske PR was of the opinion that rupture can be due to the misuse of hand and up to 20\% of patients will develop adhesions requiring tenolysis\textsuperscript{21}. 

CONCLUSION

Modified Kessler's suture technique of tendon repair is effective for delayed primary repair of flexor tendon injury in distal forearm (zone V).
1 REFERENCES


Modified Kessler suture.

Figure